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Reynolds-Averaged Navier-Stokes (RANS) models are not very accurate for high

Reynolds number, compressible jet-in-crossflow interactions. The inaccuracy arises

from the use of inappropriate model parameters and model-form error in the RANS

model. In this work we pursue the hypothesis that RANS predictions could be signif-

icantly improved by using parameters inferred from experimental measurements of a

supersonic jet interacting with a transonic crossflow. We formulate a Bayesian inverse

problem to estimate 3 RANS parameters (Cµ, Cǫ2, Cǫ1) and use a Markov chain Monte

Carlo (MCMC) method to develop a probability density function for them. The cost

of MCMC is addressed by developing statistical surrogates for the RANS models. We

find that only a subset of the (Cµ, Cǫ2, Cǫ1) space, R, supports realistic flow simulations.

We use R as our prior belief when formulating the inverse problem. It is enforced with

a classifier in our MCMC solution. We find that the calibrated parameters improve

predictions of the entire flowfield substantially, compared to the nominal/literature

values of (Cµ, Cǫ2, Cǫ1); further, this improvement is seen to hold for interactions at

other Mach numbers and jet strengths for which we have experimental data to provide

a comparison. We also quantify the residual error, which is an approximation of the

model-form error; it is most easily measured in terms of turbulent stresses.
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Nomenclature

C = Parameters in the k − ǫ RANS model to be calibrated

Cnom = Nominal values of C

Cµ = A parameter in the eddy-viscosity sub-model in a k − ǫ RANS model

Cǫ2, Cǫ1 = Parameters in the equation of the evolution of ǫ in a k − ǫ RANS model

δm = Structural error; difference between experimental data and calibrated surrogate model predictions

N (µ, σ2) = Normal distribution with mean µ and standard deviation σ

Pf = Set of probes where experimental vorticity measurements are available

P∗ = Subset of Pf with large vorticity where numerical noise is insignificant

P = Subset of P∗ where accurate surrogate models can be made

R = The physically relevant part of the C parameter space

d = Approximation error in the surrogate model

J = jet-to-crossflow momentum ratio

y(p) = RANS prediction at probe p

y
(p)
s = Surrogate model prediction at probe p

AIC = Akaike Information Criterion

GP = Gaussian Process

JIC = Jet-in-Crossflow

JPDF = Joint probability density function

LS = Learning Set

MAP = maximum a posteriori ; location of max. value of posterior probability density

MCMC = Markov chain Monte Carlo

RANS = Reynolds-Averaged Navier-Stokes

SVMC = Support vector machine classifier

TS = Testing Set
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I. Introduction

Reynolds-Averaged Navier-Stokes (RANS) models [1] are routinely used in aerodynamics due

to their robustness and speed vis-à-vis other simulation methods e.g., Large Eddy Simulations.

Typically, they are used in conjunction with k− ǫ equations to model the evolution of the turbulent

kinetic energy and its dissipation rate. The equations for k and ǫ contain empirical “constitutive

relationships”, e.g., the eddy viscosity model mapping strain-rates to turbulent stresses, the model

for turbulent viscosity in terms of k and ǫ and empirical constants (parameters). The values of

these parameters are deemed to be universal and obtained by calibrating to canonical flows e.g.,

channel and shear flows [2–4]. We call these the “nominal” values of the parameters. However,

there is nothing sacrosanct about these parameters’ values and there have been attempts to tune

them [2, 5–9] for specific flows. The tuned parameters can vary quite substantially from the nominal

ones.

Despite their widespread use, the predictive skill of k − ǫ simulations leave much to be desired.

This is especially true for complex turbulent flows, such as jet-in-crossflow interactions at high

Reynolds numbers. The lack of predictive accuracy has two sources: (1) the structural or model-

form error, due to approximations inherent in the RANS k−ǫ formulation i.e., errors due to missing

physics and (2) the use of sub-optimal values of the parameters, simply picked from literature. The

latter can be rectified by calibrating the RANS model with experimental data from a flow interaction

that is similar to the regime in which the calibrated model will be used. The relative importance of

the two sources of errors is unknown.

Our interest lies in devising a principled way for calibrating (also called tuning) a RANS model

for compressible, high Reynolds number jet-in-crossflow (JIC) interactions. JIC interactions are

poorly simulated by RANS when using parameters held at their nominal values [10]. As a first step

towards improving the predictive accuracy of RANS in JIC, we hypothesized that more relevant

parameter values could be obtained by calibrating to a strongly vortical flow. In our previous

work [11], we tested this hypothesis by designing a Bayesian calibration technique to estimate

3 RANS parameters, C = (Cµ, Cǫ2, Cǫ1), using data from an incompressible, flow over a square

cylinder (FOSC) experiment. The parameters were estimated as a 3D joint PDF (JPDF), capturing
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the uncertainty in the estimates due to limited data and the inherent shortcomings of RANS. A

Markov chain Monte Carlo sampler was used to construct the PDFs (probability density functions)

and its formidable computational cost was surmounted by using surrogate models of the RANS

simulator. (A surrogate model is a statistical “curve-fit” which maps a RANS solver’s outputs of

interest to RANS parameters/inputs being varied or calibrated. Most often, they are constructed

using polynomials and Gaussian Processes; see Ref. [12] for a comprehensive review of surrogate

models. Surrogates are used as fast running proxies of expensive engineering and scientific models

in applications such as optimization where they are invoked repeatedly.). The predictions obtained

by running JIC simulations using parameters sampled from the post-calibration JPDF were far

more accurate than the one obtained using Cnom = {0.09, 1.92, 1.44}, the nominal values of the

same parameters. The main contributions of our previous work were (1) to identify how inadequate

Cnom was for JIC interactions, and a more relevant flow interaction that could be used to obtain

better parameter settings C; (2) to construct a rigorous method of creating surrogate models for

Reynolds stresses in FOSC interactions; (3) to develop a JPDF for C using MCMC and surrogate

models of a relatively complex flow (2D turbulent flow over a square cylinder) and (4) to demonstrate

the usefulness of ensemble predictions. Using parameters sampled from the post-calibration PDF,

we found a parameter set that was very close (about 15% relative errors) to measurements from a

JIC experiment.

While our previous work showed the inadequacy of Cnom and a way to overcome it, it neverthe-

less did not address whether k− ǫ models for JIC could be improved further. The prediction errors

in Ref. [11] contained contributions from the model-form error as well as parametric sub-optimality.

In this study, we hypothesize that the bulk of the errors in RANS predictions of compressible JIC in-

teractions are due to inappropriate parameters and can be addressed by proper calibration. We will

calibrate to experimental data, obtained with a M = 3.73 jet exhausting into a M = 0.8 crossflow.

Thereafter, any deviations of RANS predictions from observations can be attributed to model-form

deficiencies of the k − ǫ model itself and the inaccuracies in the experimental data. We will also

investigate whether the calibration is overly sensitive to the gross flow properties, specifically the

strength of the jet and the freestream Mach number.
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As a first step to calibrating to JIC experimental data, we attempted to create Gaussian Process

(GP) and polynomial surrogate models that were accurate in the entire (Cµ, Cǫ2, Cǫ1) space for

JIC interactions i.e., in the manner described in Ref. [11]. It failed; the response of our calibration

variable (vorticity in the cross-plane; described in detail in Sec. III) to variations in C is too complex

and non-stationary (in the statistical sense i.e., the lengthscale of variation of the response changes

in the parameter space) to be captured by simple surrogate models. Instead, we used experimental

data to identify a promising, but irregular sub-domain in the parameter space, which had a higher

potential to provide predictive RANS simulations. We call this region R. We developed polynomial

surrogates that are valid only inside R. We use R as an improper prior (for Bayesian calibration),

with uniform density inside R, and zero outside. We develop a support vector machine classifier

(SVMC) to model R and use that inside an MCMC calibration of C. The use of a classifier to model

the valid parameter region R is borrowed from climate modeling [13]; however, surrogate models

which are valid only in a “sensible” portion of the parameter space have been used in aerospace design

optimization [14]. The use of surrogate models that are valid in only a portion of the parameter

space and a classifier that acts as a prior on the valid parameter subspace is novel in Bayesian

parameter estimation and is the second contribution of this work.

The paper is structured as follows. In Sec. II, we review literature on calibration of aerodynamic

models (both Bayesian and otherwise) and the use of surrogate models for calibration purposes in

aerodynamics. We also review support vector machine classifiers. We describe relevant work in JIC

simulations. In Sec. III, we formulate our inverse problem for estimating C (it is a conventional

one), identify the need to develop surrogate models, and provide the details of the construction.

We also describe in detail the experimental studies that supply us with our calibration data. In

Sec. IV, we provide results of the calibration, and check the predictive skill of the calibrated RANS

model for variables omitted from the calibration’s likelihood. We also investigate the usefulness of

the calibration at off-calibration points. We conclude in Sec. V.

5



II. Background

A. Jet-in-crossflow interactions

JIC is a canonical flow interaction and is used as a model for a host of practical and natural

flow phenomena [15]. It also plays a central role in the maneuvering of certain finned slender

aerodynamic bodies e.g., launch vehicles by spin rockets. In such cases, the exhaust from the spin

rockets may interact with control surfaces, modifying aerodynamic forces and moments [16]. The

problem is strongly vortical. Our interest lies in JIC interactions where the freestream (or crossflow)

is transonic and the jet supersonic, a problem that has been investigated experimentally [17–20];

we will refer to these as the “Beresh experiments”. The jet undergoes a Kelvin-Helmholtz roll-up of

the shear layer formed at the boundary of the jet and crossflow, and the flowfield is dominated by a

counter-rotating vortex pair (CVP). The CVP tracks the evolution of the jet in the crossflow, and

has horseshoe vortices circling it. The CVP and the horseshoe vortices are primarily responsible for

modification of the flow in the vicinity of the control surfaces.

The problem of JIC, in general, has also been studied numerically; references can be found

in the review paper by Mahesh [15]. The particular supersonic-jet-in-transonic-crossflow that is

the subject of this study has been investigated using k − ω models [10], which were compared

with the Beresh experiments. The study found that all k − ω models overpredicted turbulent

intensities inside the jet, resulting in simulated jets “fatter” than their experimental counterpart

i.e., the turbulent diffusion was too large in the simulations. Further, the CVP, as captured on

the crossplane (a plane perpendicular to the streamwise direction, that slices through the CVP)

resided at a point higher than in the experiments, a result at odds with overly strong turbulent

diffusion. The study conjectured that turbulent stresses were underpredicted in the jet’s nearfield,

resulting in an erroneous exchange of momentum between the jet and the crossflow. Large Eddy

Simulations [21, 22] (LES) and Detached Eddy Simulations [23] (DES) of the same JIC configuration

have also been performed and compared to the Beresh experiments; the mean-flow on the midplane

was used as the figure of merit. No comparisons were performed on the crossplane. As expected, their

agreement with experimental observations were far better than RANS. While this is encouraging,

DES and LES are too computationally intensive to be used in routine design calculations. Thus the
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need to analyse and reduce RANS prediction errors retains its importance.

B. The RANS k − ǫ model

We employ a compressibility-corrected k− ǫ RANS model [24, 25]. Our calibration parameters

(Cµ, Cǫ2, Cǫ1) appear in the equations modeling turbulent kinetic energy k and its dissipation rate
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ũi +
∂

∂xi

ũj
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Here, the damping functions f1, f2 and fµ assume values significantly different from 1 (and tending

towards zero) near the wall. MT =
√
2k/c is the turbulent Mach number. SSk is the compressibility

correction for the turbulent kinetic energy. The nominal values of the closure parameters are:

Cµ = 0.09 Cǫ2 = 1.9 Cǫ1 = 1.43 σk = 1

σǫ = 1.0 α1 = 2.5 α2 = 2.0

As described in Ref. [26], the parameter values are estimated from simple, canonical, incompressible

flows and it is unclear why they should be expected to be predictive in transonic and supersonic

regimes. The standard value of Cǫ2 = 1.92 is obtained from incompressible decaying turbulence,

though RNG k − ǫ models have it as 1.68 and experimental data [27] suggests it is 1.77. Cµ is

estimated by setting Pk−ρǫ = 0, obtained in free shear flows. It yields Cµ = (u′
1u

′
2/k)

2 ∼ 0.09 from

DNS data [28]. In uniform shear flows (∂u1/∂x2 = constant), the following relation holds

Pk

ǫ
=

Cǫ2 − 1

Cǫ1 − 1
= 2.09,
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leading to Cǫ1 = 1.43. However, experimental investigations [29] find that the ratio varies between

1.33 and 1.75, rather than 2.09. σk is set to 1, though there is no experimental justification for it [30],

and RNG k−ǫ models use 0.72. Fully developed turbulent channel flows, where Dk/Dt = Dǫ/Dt = 0

and κ2 = σǫ

√

Cµ(Cǫ2 − Cǫ1), where κ = 0.41 is the von Karman constant, is used to estimate σǫ.

Thus even in the context of incompressible flows, the nominal values of the closure parameters

introduce inconsistencies because of the tendency to treat them as “universal” constants that can

be estimated from simple flows. In reality, they are tunable constants, and their optimal values are

flow-dependent.

C. Improving the predictive skill of RANS models

The accuracy that LES and DNS (Direct Numerical Simulations) simulations can achieve have

allowed them to be used as “numerical experiments” to quantify RANS errors as well as to cali-

brate RANS models in simple flow configurations. Both types of studies require one to augment

the empirical models in RANS for the creation and dissipation of turbulent kinetic energy with a

spatially-variable “correction” or model-form error term, which is estimated from LES or DNS data.

The estimation of the model-form error has been investigated in three ways. In the first case (typi-

cally geared towards uncertainty quantification of RANS predictions), the parameters of the RANS

model are deemed accurate, and the discrepancy between RANS and LES (or DNS) is computed. In

Ref. [31], turbulence variables from 2D RANS and LES simulations of transonic flows over a bump

were compared to estimate a spatially variable error. The error was then modeled spatially and

included a random term to evaluate its impact on flow variables. This error model was tested by

performing an ensemble of RANS simulations and adding realizations of the error field by drawing

from the PDF. Recently, this approach has been extended to 3D JIC computations [32].

The second approach is, quite simply, the calibration of RANS models for a specific class of flows.

Such studies have been performed for simple flows e.g., channel flows, flow over a flat plate etc. [33–

35], and involve estimating both flow turbulence model parameters via inverse modeling as well as

fitting a structural error model. The parameters are estimated as PDFs. In Ref. [34], parameter

estimates and model-form error are estimated for the Spalart-Allmaras model using a Bayesian

approach, with observational data from incompressible boundary layer flows over a flat plate under
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both favorable and adverse pressure gradients. The study by Edeling et al. [26] addressed the same

problem, but used a k − ǫ model instead. A subsequent study by Edeling et al. [36] calibrated a

number of RANS models (k − ω, k − ǫ, Spalart-Allmaras etc.) to flat-plate boundary layer data

(under various pressure gradients) and combined them, via Bayesian Model Averaging, into a form

that was predictive for pressure gradients not included in their calibration data.

The third approach for improving RANS models ascribes the lack of predictive skill of RANS

models entirely to model-form error. As described in [37], the model-form error is represented

as a spatially dependent source field in a key turbulent transport equation e.g., the equation for

turbulent viscosity in Spalart-Allmaras models or the equation for k in k − ω models. This source

field is estimated from LES data via adjoint-based gradient descent algorithms. The source field so

obtained is then related to local flow variables via machine learning methods. A dependence on a

large number of local flow variables is imputed and linked to the source term via a neural network; a

hill-climbing algorithm is used to eliminate irrelevant local flow variables. The neural net model of

the source field so constructed is then added to the RANS model and used in simulations. Ref. [38]

describes the machine learning algorithm in detail and shows examples of source terms, trained on

flat-plate and channel flows, being used in aerofoil simulations. Their later work [39] investigated

the use of Multiscale Gaussian Processes as an alternative to neural networks. In [40], the authors

adopt a Bayesian formulation and compute the estimation error in their source field (using the

Hessian in their deterministic field inversion).

Some of the studies described above i.e., Refs. [26, 34, 36] used MCMC to perform the cali-

bration and all inferences were probabilistic. The simplicity of the flow configuration (incompress-

ible, flat-plate boundary layer) was instrumental in reducing computational costs and making the

phenomenally expensive MCMC method feasible for calibration purposes. The use of MCMC to

calibrate models for more complex flows requires one to replace the flow simulator with a surrogate.

In Ref. [41] the authors constructed surrogate models, using kriging, for the velocities and tem-

peratures predicted by LES in the crossplane of a hot jet-in-crossflow interaction. They used the

surrogates to estimate optimal values of the constant in the Smagorinsky model and a fourth-order

dissipation constant using JIC data obtained from a DNS simulation. Our previous work on RANS

9



calibration [11] using FOSC data was discussed in Sec. I. In [42], the authors performed a Bayesian

calibration of 4 k − ǫ parameters using measurements of turbulent kinetic energy (at 10 locations)

from an experiment of urban canyon flow. Similar to the approach adopted here, they constructed

a Gaussian Process surrogate of the 3D RANS simulator and inferred PDFs of the parameters using

MCMC. Estimates of the numerical discretization error, model-form error (called bias in their work)

and measurement error were also modeled and estimated as PDFs. The surrogate was valid only

in a part of the parameter space where Cǫ2 > Cǫ1, a feature that mirrors ours. They checked their

calibration by reproducing the observations; they did not check whether the calibration improved

predictions of other flow quantities. Our work is perhaps closest to [42] in approach and spirit,

though we target very different flow regimes in Mach number, Reynolds number and geometry.

Further, in contrast to [42], we check the improvement in post-calibration predictive skill for flow

variables not included as observations, for the calibration and two off-calibration interactions.

D. Support vector machine classifier

The (Cµ, Cǫ2, Cǫ1) parameter space for RANS models is defined using upper and lower bounds

on each parameter. A random combination of parameters may not even be physical i.e., the RANS

model may not even run successfully to completion. Further, non-physical parameter combinations

do not provide model predictions that are close to experimental observations. In such cases, we

can pragmatically excise the non-physical portion of the parameter space, construct a surrogate

model that is valid only in R, the physically realistic part of the parameter space, and use a

classifier (a demarcation surface) to enforce R during the calibration process. One way to construct

a demarcation surface between physical and non-physical parts of the parameter space is to define a

function ζ(C) that assumes a value of ±1 in the physical and non-physical parts respectively. Then

the level-set ζ(C) = 0 defines the demarcation surface. The problem reduces to fitting a model for

ζ(C) = 0. Support vector machines are a widely used “textbook” method for constructing such a

classifier.

Consider a set of points {Ci, ζi}, i = 1 . . . N, ζi = ±1 and Ci ∈ R
n. If the points are separable

i.e., points with the same ζ value cluster in a well-defined region of C-space, then it may be possible

to find a hyperplane L to act as a classifier. Let this hyperplane be given by g(C) = CTβ/||β||2+β0.
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As described in [43], Chapter 4, the perpendicular distance from L to {Ci, ζi} is given by g(C).

The sign of g(C) indicates the side of L on which {Ci, ζi} lies i.e., the direction of the perpendicular

vector. Define the direction such that ζi(C
Tβ/||β||2 + β0) ≥ 0 for any point that is correctly

classified. A good classifier is one that will maximize this distance for all the points i.e.,

maximize
β,β0,||β||2=1

M , subject to ζi

(

CT
i

β

||β||2
+ β0

)

≥ M, i = 1 . . . N,

or setting ||β||2 = 1/M

minimize
β,β0

||β||2, subject to ζi
(

CT
i β + β0

)

≥ 1, i = 1 . . . N.

Here || · ||2 is the ℓ2-norm of a vector. Methods to solve for β̂, the optimal solution, are in Ref. [43].

It can be shown that β̂ depends on a small set of support points {Ci, ζi} and the hyperplane L is

called the optimal separating hyperplane. In case the separating surface is more complicated and a

hyperplane does not suffice, one uses a nonlinear function h(C)

minimize
β,β0

||β||, subject to ζi (h(Ci)β + β0) ≥ 1, i = 1 . . . N.

Here h(C) is a row vector containing features of C i.e., polynomial or nonlinear transforms of

its elements that capture the nonlinear geometry of the separating surface. The precise nature

of the transform h(C) is neither required nor specified; the fitting algorithm only requires the

inner product 〈h(Ca), h(Cb)〉 = K(Ca,Cb) called the kernel. Polynomials, radial basis functions

(RBF) and neural nets are some common kernels. In our work, we will use a cubic kernel i.e.

K(Ca,Cb) = (1 + 〈Ca,Cb〉)3. Our experiments with linear kernels i.e., K(Ca,Cb) = 〈Ca,Cb〉

were not succesful and the RBF kernel, K(Ca,Cb) = exp
[

−(Ca −Cb)
2
]

, had a slightly higher

misclassification rate than the cubic kernel. A classifier that can accommodate nonlinear separating

surfaces using kernels is called a SVMC (support vector machine classifier); see [43], Chapter 12

for details.

III. Formulation of the calibration problem

In this section, we formulate a Bayesian inverse problem for estimating C = {Cµ, Cǫ2, Cǫ1}

from experimental measurements. We identify the need for surrogate modeling and also develop an

informative prior.
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Let ye be a vector (of length Np) of experimental observations, measured at a set of Np locations

(“probes”). Let ym(C) be model predictions of the same, produced by a parameter setting C. They

are related by ye = ym(C) + ǫ where ǫ is a combination of measurement and model-form error.

We make a modeling assumption that the errors at the probes are uncorrelated, independently and

identically distributed and can be modeled as draws from a zero-mean Gaussian i.e. ǫ = {ǫi}, ǫi ∼

N (0, σ2). σ2 thus provides a crude measure of the model - data misfit after calibration. If the

measurement errors are low, σ2 provides an estimate of the model-form error.

Let P (C, σ2|ye) be the joint probability density function of the parameters and the model - data

misfit, conditional on the observed data ye. Let Π1(C) and Π2(σ
2) be our prior belief regarding the

distribution of C and σ2. The likelihood of observing ye, given a parameter setting C, L(ye|C), is

given by

L(ye|C, σ2) ∝ 1

σNp

exp

(

−||ye − ym(C)||22
2σ2

)

.

By Bayes’ theorem, the calibrated distribution (or posterior distribution) of (C, σ2) can be given as

P (C, σ2|ye) ∝ L(ye|C, σ2) Π1(C) Π2(σ
2) ∝ 1

σNp

exp

(

−||ye − ym(C)||22
2σ2

)

Π1(C) Π2(σ
2) (3)

This inverse problem can be solved via sampling i.e., we can use a method such as MCMC [44]

to draw samples of {C, σ2}. We reconstruct P (C, σ2|ye) empirically by plotting histograms or via

kernel density estimation [45]. In this particular work, we use an adaptive MCMC method called

Delayed Rejection Adaptive Metropolis (DRAM; Ref. [46]), as implemented in the R [47] package

FME [48]. The convergence of the MCMC chain to a stationary distribution P (C, σ2|ye) i.e., the

determination of the sufficiency of {C, σ2} samples to construct P (C, σ2|ye), is performed using

the Raftery-Lewis method [49] implemented in the R package mcgibbsit [50]. The prior density

for σ2 is defined in terms of its reciprocal i.e., Π2(σ
−2) and is modeled using a Gamma prior i.e.,

σ−2 ∼ Γ(k, θ), where k = 1, θ = 1. The inverse Gamma prior for σ2 is a conjugate prior which

simplifies sampling of σ−2 via a Gibbs sampler. Also, the prior is virtually non-informative for

σ2 > 5.

The MCMC method requires O(104) samples to construct P (C, σ2|ye), each of which requires a

3D RANS model evaluation to provide ym(C). Since this is impractical, we will develop a surrogate

12



model, a polynomial that maps the dependence of our calibration variable (described below) on C.

This mapping is expected to hold true (i.e., within an acceptable level of error) in the support of

Π1(C). The surrogate model will serve as a computationally inexpensive proxy for SIGMA CFD

(Sandia Implicit Generalized Multi-Block Analysis Code for Fluid Dynamics), our compressible 3D

RANS simulator. We consider the following bounds on C taken from Ref. [24]:

0.06 ≤ Cµ ≤ 0.12, 1.7 ≤ Cǫ2 ≤ 2.1, and 1.2 ≤ Cǫ1 ≤ 1.7. (4)

While it is tempting to combine these bounds into a uniform distribution in the cuboid C in

(Cµ, Cǫ2, Cǫ1) space, we shall refrain from doing so since random samples drawn from it may not be

physically relevant. While the experiment revealed that the flow is turbulent with steady mean-flow,

many (Cµ, Cǫ2, Cǫ1) combinations drawn from C lead to RANS computations that do not converge

to steady state; other combinations lead to solutions that bear little resemblance to high Reynolds

number transonic flowfields (and consequently the discrepancy ye − ym(C) is very large). The in-

ability to generate reasonable model predictions ym makes it very difficult to construct surrogate

models that are accurate proxies for RANS predictions everywhere in C. Consequently, to circum-

vent this problem, we will develop a prior density that restricts the parameters to a region R, within

which the parameters produce physically realistic flowfields.

A. Experimental data

The wind tunnel experiments from which we obtain our calibration and validation data are

described in Ref. [17–19]. The test section simulated using SIGMA CFD (see schematic in Fig. 1

(left)) has a square cross section, 304.8 mm per side. Turbulent flow is introduced into the test

section from the left. A jet with diameter Dj = 9.53 mm and perpendicular to the inflow, is

introduced at the floor of the test section at Mach 3.73. PIV measurements of the flowfield are

conducted in the midplane (the plane of symmetry in JIC interaction) as well as a crossplane

(perpendicular to the jet), 321.8 mm (33.8 jet diameters) downstream from the center of the jet.

Measured quantities include velocities and the fluctuating turbulent velocities, from which turbulent

stresses (τij = −u′
iu

′
j) are computed. The studies track the penetration of the jet into the crossflow.

This tracking is performed by plotting streamwise and vertical velocity profiles at 5 locations,
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Fig. 1 Left: Schematic of the test section showing the orifice where the jet is introduced and

the mid- and crossplane where experimental measurements are made. Right: Plot of the

experimental streamwise vorticity and the window W (0 ≤ z ≤ 0.04, 0.031 ≤ y ≤ 0.11) containing

one of the vortices. Calibration and validation based on vorticity will be performed inside

this box.

starting at a distance 200 mm downstream of the center of the jet and thereafter, 50 mm apart.

Velocity and turbulent stress distributions in the crossplane are used to demarcate the CVP. Most of

the measurements are for M = 0.8 freestream flow, with J = 10.2. The wind-tunnel unit Reynolds

number is 20 × 106m−1. Midplane and crossplane measurements are also available for J = 16.7.

Measurements are restricted to the midplane for M = 0.7.

In this study we will use the M = 0.8, J = 10.2 experiment as our calibration case. In particular,

we will use the experimental velocity measurements on the crossplane to compute the streamwise

vorticity. The calibrated model will be tested against a M = 0.7, J = 10.2 and M = 0.8, J = 16.7

JIC interactions. Fig. 1 (right) shows a plot of the experimental crossplane vorticity field, clearly

showing the CVP. The window W (0 ≤ z ≤ 0.04 m, 0.031 m ≤ y ≤ 0.11 m), surrounding one of the

vortices, demarcates the region where the vortices are observed in the RANS solution as C is varied.

The window also eliminates the boundary layer seen at the bottom of the figure. Superimposing

the RANS grid on the crossplane reveals that the window is covered by an 8 × 28 grid. We refer

to these 224 grid cells as the set Pf of “probes” where both experimental and model predictions of

streamwise vorticity are available for comparison and matching during calibration.
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B. The RANS simulator

Our 3D, compressible JIC RANS simulations are performed using SIGMA CFD. SIGMA CFD

implements a compressibility-corrected k − ǫ model [24] (outlined in Sec. II B) and uses a linear

model to relate the strain rates to the turbulent stresses. The model uses turbulent Reynolds number

based (y+ independent) damping functions at the walls making it suitable for large scale parallel

computations of complex flows. A Roe-TVD flux scheme with a minmod limiter for discontinuity

capturing has been used for the spatial discretization. Time integration is carried out using a first

order point-implicit scheme. The calculations are initialized using a first-order spatial scheme, time-

marched for 5000 timesteps, and relaxed to convergence using the second order scheme for 25000

timesteps. Time marching to steady state was carried out using local time stepping with a gradual

CFL ramp to accelerate convergence.

The simulations are performed on a multi-block mesh with approximately 10 million grid-cells.

Earlier work [10] showed that mesh converged RANS results are obtained on this mesh. The

simulation resolves the test section from 10 jet diameters upstream of the nozzle to about 60 jet

diameters downstream of the nozzle. The near wall spacing is maintained at y+ = 1 in this region.

The jet nozzle is resolved from the stagnation chamber upstream of the throat, again using a mesh

with near wall spacing at y+ = 1. In order to provide inflow boundary conditions to the flow in

the tunnel test section a full RANS simulation of the test section is carried out first. The profile

at the station corresponding to the inlet boundary of the JIC domain is extracted and provided

as boundary conditions to the JIC simulations. The details of the initialization (static and total

pressures and temperatures for the jet and crossflow, etc.), necessary for reproducing experimental

conditions are in [10, 17].

SIGMA CFD is primarily used to perform an ensemble of JIC simulations, corresponding to

different (Cµ, Cǫ2, Cǫ1) inputs, and construct a training data corpus for the surrogate model (see

Sec. III C and III D). The values of σǫ and σk are held at their nominal values [24], at variance

with [42] where σk was estimated and

σǫ =
κ2

√

Cµ(Cǫ2 − Cǫ1)

was imposed. The expression is derived from fully developed turbulent channel flows where Dk/Dt =
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Dǫ/Dt = 0 and implies that Cǫ2 > Cǫ1 to prevent σǫ from becoming zero or negative. This constraint

was imposed as a prior belief in [42]. Here, JIC is far from being a channel flow and the material

derivatives are not zero, so it is not clear what prior belief should be employed. Hence we find it

empirically in Sec. III C; our prior in Eq. 4 ensures Cǫ2 > Cǫ1, and our empirical method also finds

the margin (Cǫ2 − Cǫ1) that must be maintained.

C. Designing an informative prior

Model calibration requires one to search for parameters which allow a model to reproduce ex-

perimental observations. While Eq. 4 establishes the bounds of the parameter space C, arbitrary

parameter combinations selected from this space may be non-physical, leading to unrealistic flow-

fields or may cause the RANS simulator to crash. In this section we devise a way of selecting R, the

part of C containing (Cµ, Cǫ2, Cǫ1) values that produce physically realistic flowfields. We draw 2744

samples of (Cµ, Cǫ2, Cǫ1) from C using a space-filling, quasi Monte Carlo method (Halton sequence,

as implemented in the R package randtoolbox [51]) and use them to seed 3D RANS JIC simula-

tions. Each simulation (approximately 12 hours on 1024 cores of a PowerPC A2 processor) results in

a streamwise vorticity prediction on the crossplane. 100 runs failed and a number of the remaining

2644 runs resulted in non-physical flowfields. On the whole, the variation of (Cµ, Cǫ2, Cǫ1) led to

CVPs of varying sizes, strengths and locations.

In order to identify R, we compute the root mean square error (RMSE) between the streamwise

vorticity produced by each of the simulations and the experimental counterpart on the crossplane.

We retain the Ns = 525 runs whose RMSE lie below the 20th percentile. The (Cµ, Cǫ2, Cǫ1) for

these selected runs, which identify R, are plotted in Fig. 2. The 3D scatterplot clearly shows that

R excludes a large portion of C. Fig. 2, bottom right, clearly shows Cǫ2 > Cǫ1. The threshold of

20th percentile was arrived at by trial and error. A larger percentile e.g., the median, resulted in a

R that included the non-physical part of the parameter space. Its strongly non-stationary response

surface could not be captured with a surrogate model (see Sec. III D). Setting a lower threshold e.g.,

15th percentile resulted in a training set that was too small to construct surrogate models whose

accuracy could be measured, via cross-validation, with any degree of confidence.

Our next step lies in using the training set of Ns (Cµ, Cǫ2, Cǫ1) points to devise a function in C
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Fig. 2 Top left: Scatterplot of the set of Ns points in the (Cµ, Cǫ2, Cǫ1) space that constitute

R. Top right: Projection of the points onto the Cµ − Cǫ2 plane. Bottom: Projections of the

points on the Cµ − Cǫ1 and Cǫ1 − Cǫ2 planes. The nominal value of C, Cnom is also plotted.

that can be used to demarcate R. We define a function ζ(C) in C that is set to 1 at the Ns points

that define R and -1 at the remaining 2744 - 525 = 2219 (Cµ, Cǫ2, Cǫ1) combinations that we had

drawn from C. We define the level set ζ(C) = 0 as ∂R, the separating surface for R. We model ∂R

using SVMC, with a cubic kernel. The SVMC is fitted using the R package e1071 [52]. Five-fold

cross-validation is used to estimate the hyperparameters of the SVMC. We test the accuracy of

ζm(C) using repeated random subsampling validation (a form of cross-validation). We randomly

17



divide the 2744 samples of ζ(C) into a Learning Set (LS) with 2332 samples (85% of the total)

and a Testing Set (TS) with the rest. A SVMC is built using the LS and used to classify/predict

at the (Cµ, Cǫ2, Cǫ1) combinations in the TS. The misclassification rate is then computed. This is

repeated 50 times, with different LS/TS pairs, and the mean misclassification rate over 50 rounds of

cross-validation is found to be around 1%. Thus we find the resulting classifier to be quite accurate.

We model the prior density within R as a uniform distribution i.e., all (Cµ, Cǫ2, Cǫ1) combinations

are equally probable. Outside R, the prior density is zero.

D. Polynomial surrogate models

Let y(p)(C) be the streamwise vorticity on the crossplane, predicted by RANS at probe p, p ∈ Pf .

We seek to construct an approximation y
(p)
s (C) using multivariate polynomials involving C,C ∈ R.

Since y(p)(C) is obtained by taking the derivative of the velocity field, it tends to be contaminated

with some numerical noise. For probes p in or near the center of the CVP, the large magnitude of

vorticity allows its dependence on C to be discovered and modeled. The rest of the probes, where

numerical noise is substantial, have to be eliminated.

For a given RANS run, we compute the 75th percentile of the vorticity magnitudes obtained at

probes p, p ∈ Pf and retain the 224/4 = 56 probes with absolute vorticities above this threshold.

The vorticities predicted at these probes are expected to be large enough to be minimally affected

by numerical noise. This is repeated for all C in our training data of Ns = 525 RANS runs that lie

inside R; a different set of probes is selected for each run since the CVP changes its size and location

as C varies. We take a union of these probes to create a set P∗, containing 108 probes, where we

will attempt to create surrogate models. The probes in P∗ are plotted on top of the experimental

vorticity field in Fig. 3 (left) with circles. Note that P∗ is not the set of probes that we will use in

the calibration; as we will see below, we will be able to create surrogate models, of an acceptable

quality, only for a subset of them.

The method to create and test the robustness of surrogate models is the same as the one
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Fig. 3 Left: Plot of experimental vorticity inside W with the probes constituting P∗ overlaid

on it and marked with ◦. Right: Comparison of δ
(p)
LS and δ

(p)
TS for all 108 probes in P∗. We

note that the two relative errors are of the same magnitudes, indicating that there is little

overfitting of the surrogates. We also see that for some probes, the relative errors can be

big i.e., surrogates are not necessarily accurate for all probes. Some of the errors also lie

outside the range of the vertical axis and are not plotted. The horizontal line at 10% error

demarcates the probes that can be used in calibration; the rest of the polynomial surrogates

are too inaccurate for any practical use. The probes which lie under the green line are plotted

on the right with + symbols.

described in Ref. [11]. At any probe p, p ∈ P∗, we postulate that

y(p) =

l=3
∑

l=0

m=3
∑

m=0

n=3
∑

n=0

α
(p)
l,m,n(Cµ)

l(Cǫ2)
m(Cǫ1)

n + d,

= y(p)s + d,

3 ≥ l +m+ n, (5)

where y
(p)
s is the polynomial approximation (surrogate) of the 3D RANS prediction of the crossplane

streamwise vorticity y(p) and d is the approximation error. In order to estimate the coefficients

α
(p)
l,m,n, we use the dataset {Cµ, Cǫ2, Cǫ1, y

(p)}i,Ci ∈ R, i = 1 . . . 525, and fit the model in Eq. 5

via least-squares fitting. We simplify the model by incrementally removing high-order terms and

refitting the shrunk model to the same data. The (original) cubic model and its shrunk counterpart
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are competed using AIC (Akaike information criterion); if the shrunk model results in a lower

AIC, it is retained and subjected to the same incremental simplification process. We find that

simplification removes terms from Eq. 5 for all probes in P∗, and in some cases reduces the cubic

model to quadratic.

We next test whether the AIC-based simplification procedure yields robust surrogate models.

This is done via repeated random subsampling validation, and results are averaged over 100 rounds.

The Ns RANS runs are separated into an LS containing 446 (approximately 85% of the runs)

randomly selected runs, while the remainder constitute the TS. The simplified polynomial model

is constructed using the LS and the relative error for each parameter combination i in the LS,

δ
(p)
i,LS = (y

(p)
i − y

(p)
s,i )/y

(p)
i , i ∈ LS, is evaluated. Here y

(p)
i refers to RANS predictions computed

using the parameters Ci, i ∈ LS. The fitted model is also used to evaluate y
(p)
s,j for the parameter

set j, j ∈ TS, and calculate the corresponding relative error i.e., δ
(p)
j,TS = (y

(p)
j − y

(p)
s,j )/y

(p)
j , j ∈ TS.

These individual relative errors are summarized by their RMS (root mean square) value for the LS

and TS. This process is repeated 100 times, using different LS/TS pairs; the means of the RMS

relative errors, δ
(p)
LS and δ

(p)
TS , are taken as measures of accuracy of the polynomial surrogate. The

process is repeated for all the 108 probes in P∗.

In Fig. 3 (right) we plot δ
(p)
LS and δ

(p)
TS for all the probes. We notice that for about half the

probes, the two relative errors are very close i.e., the polynomial model fitted to the LS data is

equally predictive of the TS. This indicates that the polynomial model does not overfit the LS

data; had this not been the case, δ
(p)
LS would have been substantially smaller than δ

(p)
TS . We also

notice that for certain probes the relative error is high i.e., the polynomial model is not an accurate

representation of y(p), and should not be used in calibration. Using 10% error (horizontal line in

Fig. 3 (right)) as the criterion, we retain 52 out of 108 probes in P∗ where the polynomial model is

deemed to be sufficiently accurate. Further, for these selected probes, the LS and TS relative errors

are very close. We refer to this set of 52 probes as P; since we can construct accurate surrogate

models for all probes p, p ∈ P, we will use them for calibration purposes. The probes in P are

plotted in Fig. 3 (left) using + signs. They occupy the center of the experimental vorticity field

with large vorticity magnitudes.
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We also tested Gaussian Process (GP) surrogates for representing vorticity as a function of

(Cµ, Cǫ2, Cǫ1). They were about as accurate as polynomial surrogates inside R, but far more com-

putationally expensive. Also, since our GP surrogate was based on a stationary covariance matrix,

it did not perform well in the non-physical parts of the parameter space, where the response of

vorticity to (Cµ, Cǫ2, Cǫ1) was strongly non-stationary.

E. The inverse problem

We will solve a slight variation of Eq. 3 to estimate C from the Beresh experiments

P (C, σ2|ye) ∝ L(ye|C, σ2) Π1(C) Π2(σ
2) ∝ 1

σNp

exp

(

−||ye − ys(C)||22
2σ2

)

Π1(C) Π2(σ
2), (6)

the modification being the substitution of crossplane streamwise vorticity predictions via a 3D RANS

model, ym, by predictions via surrogates ys = {y(p)s }, p ∈ P. Post-calibration, we will draw samples

of (Cµ, Cǫ2, Cǫ1) from P (C, σ2|ye) and run RANS simulations to generate an ensemble of crossplane

vorticity predictions. Statistical summaries of the vorticity field lying inside the window W will be

used for validation purposes. We will also check the degree of accuracy with which we can predict

the mean flow on the midplane. This will be performed for three cases: M = 0.8, J = 10.2 (the

calibration case), M = 0.8, J = 16.7 and M = 0.7, J = 10.2 (the off-calibration cases).

IV. Results

We first check our software infrastructure for solving Eq. 6 to develop a posterior distribution

for C. We do so by performing a “synthetic data inversion”, where we construct the “observations”

(vorticity on the crossplane) using Csynth = {0.097, 2.06, 1.37}. These “observations” were gener-

ated using the RANS simulator and will differ from surrogate model predictions by about 5%, the

surrogate modeling error; see Fig. 3 (right). We then calibrate C using these synthetic observations

and surrogate models (note: Csynth is not included in our training data for surrogate models); we

expect that our PDFs will peak at Csynth if the software infrastructure is correct. Fig. 4 plots the

marginalized posterior PDFs from the synthetic data case. Comparing the posteriors (solid line)

to the priors (dashed line), we see a reduction in parametric uncertainty, especially for Cǫ2 and

Cǫ1. We also see that the PDFs peak at the true parameter value Csynth. The width of the PDFs

(uncertainty in the estimate of Csynth) is due to limited observations (data at 52 probes constituting
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is the prior i.e., R. We see that the calibration significantly shrinks the uncertainty of the
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Fig. 6 Two-dimensional marginalizations of the posterior distribution. The correlations be-

tween the components of (Cµ, Cǫ2, Cǫ1) are clearly seen.

P) and the approximation error between RANS and the surrogate models. The slight estimation

bias in Cǫ1 (the shift between the true and the maximum a posteriori or MAP value or the “peak

of the PDF” value of the parameter) is due to the same reason. These parameter estimates do not

suffer from measurement or model-form errors, and the estimate for σ in Fig. 4 assesses only the

impact of surrogate model errors.

The Bayesian inverse problem defined in Eq. 6 requires about 28,000 MCMC steps to reach a
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stationary posterior distribution. Analyses of the MCMC chains and tests to determine convergence

to a stationary 4-dimensional ({Cµ, Cǫ2, Cǫ1, σ
2}) distribution are in the Appendix A. The posterior

is marginalized and the 1D PDFs for the individual parameters are plotted in Fig. 5 (left); the

nominal values are plotted using vertical lines. It is clear that the MAP values of the parameters

vary significantly from the nominal ones, except for Cǫ1. Our calibration favors values of Cµ larger

than the nominal, in contrast to the findings in Ref. [42]. The MAP value of Cǫ2 obtained is similar

to [42], though its proximity to the upper bound shows that the bounds in Ref. [42] are more

appropriate. The MAP estimate of Cǫ1 is similar to the nominal one, and agrees with the one found

in Ref. [42]. Note that while the MAP values may agree, the PDFs inferred in our study are not at

all similar to those in [42]; given the difference in compressibility, Reynolds number (50,000 in [42])

and flow geometry, this is not entirely surprising. An estimate of the model - data mismatch in

the form of σ is also obtained. Comparing σ with the vorticity plotted in Fig. 3 (left), we see that

the misfit is quite large. Further, comparing the plots for σ in Fig. 4 and Fig. 5, we see that σ, as

estimated from experimental data (MAP value of around 1400), is about six times larger compared

to the synthetic data case (MAP value around 250). The former assesses the effect of measurement,

model-form and surrogate modeling error, whereas the latter is limited only to surrogate modeling.

As a check, we also performed a calibration using the same formulation, but with a genetic

algorithm as the global optimizer. The optimization is performed with surrogate models, using the

genetic algorithm implementation in the R package GA [53]. GA algorithms are described in [54].

We start with a population of 200 parameter settings C drawn from R, and run for 100 iterations.

At each iteration each ensemble member could be crossed over with another with probability 0.8,

and could undergo a mutation with probability 0.33. Mutations were uniform random mutations

in the components of C, whereas crossovers were blended. Mutations and crossovers produce off-

spring of different fitness (i.e., an ability to reproduce observations) and increase the population.

At the end of the iteration, the population is thinned; members are selected with a probability

linearly proportional to their fitness. The convergence of the algorithm is in Fig. 5 (right). The

best/converged value of the parameters are Cµ = 0.105, Cǫ2 = 2.099, Cǫ1 = 1.42. In Fig. 6, we plot

2-dimensional marginalizations of the JPDF. We see significant correlations between Cǫ1 and the
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Fig. 7 Left: Distribution of circulations, the centroids and radii of gyration generated from

100 samples from the posterior distribution, normalized by their experimental counterparts.

Predictions using Cnom are plotted with ◦. The results correspond to the M = 0.8, J = 10.2

case. Right: Distributions for the M = 0.8, J = 16.7 case.

rest of the RANS parameters. The figure also shows the dramatic shrinkage of the (valid) parameter

space / parametric uncertainty as a result of assimilation of experimental data.

We next examine the calibrated model’s predictive skill. We use 100 (Cµ, Cǫ2, Cǫ1) samples

from the posterior distribution to generate vorticity fields on the crossplane by running the 3D

RANS simulator. The vorticity field is then approximated by a point vortex, whose circulation

is obtained by integrating the vorticity in W. The centroid of the vorticity distribution in W is

assigned the position (y, z) of the point vortex. In addition, we compute the radius of gyration of

the vorticity distribution inside the W as a simple proxy for its size. We will refer to these metrics

as the “point vortex metrics”. In Fig. 7 (left), we boxplot the “point vortex metrics”, normalized

by their experimental counterparts for the M = 0.8, J = 10.2 case. The individual circles plot the

predictions obtained using Cnom. We see that for the circulation and the position, our errors are well

within 5%; this holds true even for the interquartile range. The radius of gyration is underpredicted

by about 10%. Such an accurate representation is somewhat expected since the vorticity field was

used to calibrate the model. In Fig. 7 (right), we plot the results for the M = 0.8, J = 16.7 case.

Note that the model was not calibrated for this case and the plot measures the predictive skill of

the model at an off-calibration point. We see that the circulation and height y of the centroid are
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Fig. 8 Left column: Streamwise vorticity in the crossplane computed using Cnom, over-

laid with vorticity, as measured in experiments. J = 10.2 and 16.7 for the top and bottom

rows. Right column: Crossplane streamwise vorticity predicted using the “optimal” values of

(Cµ, Cǫ2, Cǫ1),Copt. Qualitatively, the agreement is quite good. The improvement over Cnom

(left column) is stark. Linear dimensions are in meters.

accurately captured for the J = 16.7 case, but 20% - 30% errors are seen in z (horizontal distance

from the test-section midplane) and the radius of gyration. The improvement of the predictions,

post-calibration, are stark. The Beresh experiments do not contain crossplane measurements for

the M = 0.7, J = 10.2 case and consequently, we omit the comparison here.

The set of runs plotted in Fig. 7, for the M = 0.8, J = 10.2 case, allow us to identify an optimal

parameter combination (from the 100 points sampled from the posterior). The deviations (from

1) of the ratios plotted in Fig. 7 (left) allow us to define an error and consequently a mean square

error that combines the deviations in circulation, centroidal position and the radius of gyration.
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The run with the minimum mean squared error yields the best (Cµ, Cǫ2, Cǫ1) combination Copt =

{0.1025, 2.099, 1.416}. Note that this value is not very different from the optimal values yielded by

the genetic algorithm optimization (Cµ = 0.105, Cǫ2 = 2.099, Cǫ1 = 1.42). In Fig. 8, we plot, in the

left column, the streamwise vorticity distribution computed on the right half of the crossplane using

Cnom. In the right column, we plot the corresponding vorticity distribution obtained using Copt.

Overlaid on each are contour plots of the vorticity distribution obtained experimentally. The top row

contains results for the M = 0.8, J = 10.2 case; J = 16.7 is plotted in the bottom row. In general,

the vorticity distribution obtained using Copt (right column) is very close to the experimental values.

The improvement over the predictions with Cnom (left column) is substantial. These figures bear

out the summaries in Fig. 7, which showed that calibration to the M = 0.8, J = 10.2 case improved

the predictive skill of RANS at an off-calibration value of J .

In Fig. 9 we investigate the effect of the model-data mismatch σ2. We use the 100 {Cµ, Cǫ2, Cǫ1, σ
2}

samples from the posterior distribution to perform an ensemble of simulations and predict the cross-

plane vorticity at the 52 probes used in the calibration. These predictions, normalized by their

experimental counterparts, are plotted in Fig. 9 (top left); the horizontal line indicates when the

model predictions match experimental values. We call these the “pushed forward posterior”. We

also add the model-data mismatch (the effect of σ2) to the vorticity predictions and plot them,

normalized by the experimental values, in Fig. 9 (top right). These are conventional posterior pre-

dictive runs. The error bars are the 5th and 95th percentiles of the ensemble of model predictions. It

is clear that without the effect of σ2, there is hardly any variability in the vorticity predictions due

to uncertainty in (Cµ, Cǫ2, Cǫ1); for probe numbers 1-30, the model ensemble predictions are also

not close to the experimental values. It is only after adding the effect of the model-data mismatch

σ2 that the model predictions cover the experimental measurements as seen in Fig. 9 (top right).

Thus, the data-model mismatch for vorticity, a composite of measurement, surrogate, discretization

and model-form errors, is quite necessary for covering experimental data, not merely coming close

to it. Further, since σ2 is a measure of square-integrated differences between model predictions and

experimental values, small spatial shifts/disagreements of the two rough fields can result in large σ2.

In contrast, for integrated (i.e., not square-integrated) quantities like circulation, the spatial shifts
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Fig. 9 Top row: Model predictions of crossplane vorticity at the 52 probes using 100

{Cµ, Cǫ2, Cǫ1, σ
2} samples drawn from the posterior distribution. Predictions are normalized by

the corresponding experimental values. A value of 1 (horizontal line) indicates that predic-

tions match experimental measurements. Error bars indicate the 5th and 95th percentile values

computed using the 100 predictions. The filled symbols are the median predictions. On the

left, we compute vorticity using σ2 = 0 i.e., variability in model predictions is entirely due to

uncertainty in (Cµ, Cǫ2, Cǫ1) and have no contribution from the model-data mismatch. On the

right, we add in the effect of σ2. Bottom row: Predictions of the streamwise velocity deficit

(left) and vertical velocity (right) on the midplane at a point 21 jet diameters downstream of

the jet. Experimental measurements are plotted with symbols (◦), and the median prediction

from the 100 model simulations with solid lines (—) . The dashed lines (- - -) are the 5th and

95th percentiles of the model predictions. These predictions do not have any contributions of

the model-data mismatch.
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and rough nature cease to be significant due to cancellation of opposite-signed differences, and the

agreement between numerical predictions and experimental values is quite good (see Fig. 7).

In Fig. 9 (bottom row) we plot summaries of the ensemble of model predictions of streamwise

velocity deficit and vertical velocities on the midplane at x/Dj = 21, where Dj is the jet diameter.

The median predictions are plotted with solid lines and the 5th and 95th percentiles with dashed

lines. Since these measurements were not used in the calibration, we do not have a model-data

mismatch for them and these simulations are “pushed forward posteriors”. The qualitative features

of the vorticity “pushed forward posteriors” are even more evident here - parametric uncertainty

around the calibrated parameter values result in little predictive variability and do not cover the

experimental measurements. However, calibration does draw the predictions closer to experimental

measurements versus Cnom; see Fig. 7, Fig. 8, Fig. 10 and Fig. 11.

In Fig. 10 (top), we plot the streamwise velocity deficit in the midplane at x/Dj = 21 for

M = 0.8, J = 10.2, M = 0.8, J = 16.7 and M = 0.7, J = 10.2 interactions. In Fig. 10 (bottom) we

plot the vertical velocity on the midplane at the same flow conditions. In Fig. 11, we plot the same

quantities but at x/Dj = 31.5. The data for the plots were obtained using Cnom, Copt and the

ensemble mean of the 100 (Cµ, Cǫ2, Cǫ1) samples drawn from the posterior. These are compared with

the experimental values (◦). We see that the ensemble mean and Copt predictions always lie closer

to the experimental values than Cnom; in the case of M = 0.8, J = 10.2 and M = 0.7, J = 10.2, the

agreement between the predicted and experimental values is very close. Further, the predictions

using Copt and the ensemble mean are almost identical. Predictions using Cnom bear out the

inferences drawn from Fig. 7 - the CVP sits far above the experimentally observed CVP, and is

much too strong in all cases. Post-calibration, the position as well as the strength of the CVP is

closer to the experimental values. The vertical velocity in the midplane is largely governed by the

CVP. Fig. 7 and Fig. 8 show that the calibration immensely improves our ability to capture the

crossplane vorticity (vis-à-vis predictions with Cnom), and improvements in predictions of vertical

velocity largely follow. Note that the calibration was performed only on the M = 0.8, J = 10.2 case,

and that too, using streamwise vorticity on the crossplane; however, the calibration improves the

entire flowfield (as seen in the streamwise deficit and vertical velocity profiles) and is applicable at

29



(U(x) - u)/U(x)
-0.05 0 0.05 0.1 0.15 0.2

y/
D

j

0

5

10

15

x/D
j
 = 21

Experimental
Ensemble mean
Best case
Nominal

(U(x) - u)/U(x)
-0.05 0 0.05 0.1 0.15 0.2

y/
D

j

0

5

10

15

x/D
j
 = 21

(U(x) - u)/U(x)
-0.05 0 0.05 0.1 0.15 0.2

y/
D

j

0

5

10

15

x/D
j
 = 21

v/U
∞

-0.1 0 0.1 0.2 0.3 0.4

y/
D

j

0

2

4

6

8

10

12

14

16

x/D
j
 = 21

Experimental
Ensemble mean
Best case
Nominal

v/U
∞

0 0.2 0.4 0.6

y/
D

j

0

2

4

6

8

10

12

14

16

x/D
j
 = 21

v/U
∞

-0.1 0 0.1 0.2 0.3 0.4
y/

D
j

0

2

4

6

8

10

12

14

16

x/D
j
 = 21

Fig. 10 Top row: Streamwise velocity deficit at x/Dj = 21, as computed for the M = 0.8, J = 10.2

(left column), M = 0.8, J = 16.7 (middle column) and M = 0.7, J = 10.2 (right column). In each

subfigure on the top row, we plot the streamwise velocity deficit (U(x)− u)/U(x) as measured

experimentally (◦), as predicted using Cnom (dashed red line, - - - ) and Copt (+ ). Here

U(x) is the bulk (or plug) flow velocity. We also plot the ensemble mean predictions from the

100 (Cµ, Cǫ2, Cǫ1) samples from the posterior distribution as the thin black line — (it is very

close to the Copt prediction). Bottom row: We compare the vertical velocity v/U∞ instead of

streamwise velocity deficit.

other values of J and M as well.

Post-calibration, the main cause of the discrepancy between experimental observations and

numerical predictions is the model-form error in RANS; the surrogate modeling error is a secondary

source of error as it is capped at 10%. These errors are caused by the manner in which the turbulent

stresses and their evolution are modeled. We use a linear eddy viscosity model, which relates the
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Fig. 11 Top row: Streamwise velocity deficit at x/Dj = 31.5, as computed for the M = 0.8, J =

10.2 (left column), M = 0.8, J = 16.7 (middle column) and M = 0.7, J = 10.2 (right column).

In each subfigure on the top row, we plot the streamwise velocity deficit (U(x) − u)/U(x) as

measured experimentally (◦), as predicted using Cnom (dashed red line, - - - ) and Copt (+ ).

Here U(x) is the bulk (or plug) flow velocity. We also plot the ensemble mean predictions from

the 100 (Cµ, Cǫ2, Cǫ1) samples from the posterior distribution as the thin black line — (it is very

close to the Copt prediction). Note that for the M = 0.8, J = 16.7 case, the nominal prediction

of the streamwise flow deficit lies mostly outside the vertical range where experimental data

was gathered. Bottom row: We compare the vertical velocity v/U∞ instead of streamwise

velocity deficit.

turbulent stresses τij to strain-rates Sij and turbulent kinetic energy k. It is stated as

τij = −u′
iu

′
j =

2

3
kδij −2νTSij , k =

∑

i

u2
i and Sij =

1

2

(

∂ui

∂xj

+
∂uj

∂xi

)

− 1

3
δij

∑

k

∂uk

∂xk

(7)

and forms a convenient place to quantify and analyze the model-form error of our RANS model
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after calibration. In Fig. 12, we compare ensemble mean predictions of turbulent stresses obtained

from the 100 (Cµ, Cǫ2, Cǫ1) posterior samples against experimental measurements from Ref. [18]

for our two tests. We also plot the predictions obtained using Cnom. Calibration to crossplane

vorticity (for the M = 0.8, J = 10.2 case) results in a loss of agreement with measurements for τ22

(under-prediction) and τ11 (over-prediction). τ12 is grossly underpredicted. In fact, the ensemble

mean predictions of τ11 and τ22 are almost indistinguishable. The predictions with Cnom show the

CVP sitting too high. The same behavior is seen at the off-calibration point - there is agreement for

τ22 but the rest of the turbulent stresses are badly predicted. This behavior pinpoints the source of

the model-form error.

The reason the ensemble mean predictions of τii are so close is because the strain rates (in the

midplane) in the RANS predictions are too small. This leads to a gross under-prediction of τ12 using

Eq. 7 (see Fig. 12) whereas as for τii, k dominates over the term with Sij . Calibration leads to a k

that splits the difference between τ11 and τ22. The linear eddy viscosity model has too simple a form

to capture the significant differences in the magnitude of the three stresses and a more complex model

is required to bridge this gap. Yet, despite these large errors in the turbulent stress predictions, the

large scale structures in the mean flow were only moderately affected, suggesting that the effect of

these stresses, and the model-form error in the linear eddy viscosity model, are somewhat muted.

Note that it is the gradients of the turbulent stresses, and not the stresses themselves, that appear

in conservation equations for momentum and energy.

V. Conclusions

In this study, we have investigated whether RANS models can be calibrated to be predictive

in supersonic-jet-in-transonic-crossflow interactions. We have proceeded under the hypothesis that

the nominal values of (Cµ, Cǫ2, Cǫ1) = Cnom are unsuitable and a better parameter set could be

identified via calibration to experimental data. We find that it is possible to do so; further, the

calibrated RANS model is predictive for JIC interactions different from the one employed in the

calibration.

We adopted a Bayesian calibration method and estimated the RANS parameters (Cµ, Cǫ2, Cǫ1)

as a joint PDF, thus quantifying the uncertainty in the estimation. We employed an adaptive
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Markov chain Monte Carlo (MCMC) method to do so. We also obtained a crude estimate of the

data - model mismatch, an amalgamation of measurement, surrogate modeling and model-form

errors; it was represented statistically as a Gaussian distribution with zero mean and a standard

deviation of σ2. Vorticity on the crossplane was used as the observable, and was found to be sufficient

for estimating (Cµ, Cǫ2, Cǫ1). The calibration used surrogates of the 3D RANS simulator, due to the

phenomenal computational cost of using MCMC. Construction of the surrogates posed a formidable

challenge. While the bounds on Cµ, Cǫ2 and Cǫ1 are known, their random combinations do not yield

physically realistic flows, and in some cases, the RANS simulator will not even yield results. We

identified a physically realistic region R of the parameter space and developed polynomial surrogates

that were valid only inside R. The region R is complex and we developed a support vector machine

classifier to identify whether an arbitrary (Cµ, Cǫ2, Cǫ1) combination was inside it. R was also

leveraged to serve as an informative, if improper, prior for (Cµ, Cǫ2, Cǫ1); prior density was 1 inside

R and zero outside. The classifier, as well as the polynomial surrogates, were used with MCMC to

obtain a 4-dimensional joint PDF for (Cµ, Cǫ2, Cǫ1, σ
2).

The joint PDF for (Cµ, Cǫ2, Cǫ1, σ
2) was constructed using measurements from an experiment

conducted at M = 0.8, J = 10.2 [17–19]. Bayesian calibration dramatically shrank the valid region

of the parameter space, reducing parametric and predictive uncertainties. MAP estimates of Cǫ2

and Cǫ1 are similar to those obtained in Ref. [42]. However, the MAP estimate of Cµ and the

PDFs do not agree with those in Ref. [42]; given the difference in the flow regimes and geometries,

this is not very surprising. As a test of the predictive skill of the posterior PDF, 100 samples

drawn from it were used to run the 3D RANS simulator and predict the vorticity on the crossplane.

Prediction errors were ≤ 5% for integrated quantities such as circulation, which was expected since

vorticity was the calibration variable. However, the same runs yielded very good agreement with the

experimentally measured streamwise velocity deficit and vertical velocity on the midplane, providing

some corroboration that the flowfield away from the crossplane was similar to the experimental one.

The improvement over the flowfield computed with the nominal values of (Cµ, Cǫ2, Cǫ1), Cnom

is substantial, and can be seen in all the flow variables that we investigated. We used the joint

PDF, computed using M = 0.8, J = 10.2 data, to predict the flowfield at M = 0.8, J = 16.7 and
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M = 0.7, J = 10.2. Our calibrated RANS model yielded substantial improvements over predictions

using Cnom. Thus our hypothesis that the inaccuracy of RANS in jet-in-crossflow interactions

was due to the unsuitability of Cnom proved correct; in comparison, the model-form error was of

secondary importance. Note that while we may have obtained encouraging results for JIC, we do

not claim that our PDF will be equally predictive for other flow configurations.

The model-form error, nevertheless, does exist, and post-calibration, is the dominant error term.

It causes the degradation of predictive skill when we apply our RANS model at off-calibration points.

We isolated the effect of the model-form error on the midplane and pinpointed its source to be the

simplicity of the linear eddy viscosity model used in our simulations. The contributions to the

turbulent stresses by mean flow quantities (strain rate in the case of the linear eddy viscosity

model) are grossly underpredicted. This error could be rectified by augmenting this closure model,

for example, by employing a nonlinear eddy viscosity model. This investigation is left for future

work.
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Fig. 12 Profiles of −τ11/U
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(first column), −τ22/U
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∞

(second column) and −τ12/U
2
∞

(last col-

umn) as a function of y/Dj at x = 200 mm behind the jet on the mid-plane (x/Dj = 20.9).

Experimental measurements are plotted with a ◦, the ensemble mean predictions from our

100 ((Cµ, Cǫ2, Cǫ1)) values from the posterior are plotted with a solid line (–) and the predictions

with Cnom are plotted with a dashed line (- - -). Top row, we plot results from the calibration

case (M = 0.8, J = 10.2). The middle row contains results from the (M = 0.8, J = 16.7) test case.

The bottom row contains results from the M = 0.7, J = 10.2 case.
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Appendix A: Stopping criterion for the MCMC procedure

In this section, we analyze the chains from the MCMC inference to gauge their convergence to

a 4-dimensional stationary distribution in the {Cµ, Cǫ2, Cǫ1, σ
2} space. The MCMC chain was run

to 40,000 iterations, regardless of whether ye consisted of synthetic or experimental observations.

In this analysis we use the case where ye consisted of measurements from the Beresh experiments,

since it provides a more stringent convergence test case. 1 in every 5 samples was retained i.e., the

MCMC chain was thinned by a factor of 5. The thinned chain of 8000 samples is saved to a file. In

Fig. 13 (top row) we plot the last 400 samples of the thinned MCMC chains for (Cµ, Cǫ2, Cǫ1); the

auto-correlation is quite evident. In the bottom row, we plot the partial auto-correlation functions

for the same chains. We see the dominant auto-correlation is of lag 1 (or a lag of 5 in the un-thinned

Markov chains). However, some auto-correlation persists till about a lag of 3 or 4 (15-20 in the

un-thinned chains).

The convergence of the chains was tested using the Raftery-Lewis (RL) method [49], as imple-

mented in mcgibbsit package [50] in R. Convergence of the median, the most stringent criterion

for the RL test [55], was used as the convergence metric. The RL test uses the median of each

parameter to convert the corresponding chain to a binary (0/1) one. It then counts the 0-0, 0-1,

1-1 and 1-0 transitions to fill a contingency table. The table is checked to see if the transitions

resemble draws from a high-order Markov process (i.e., auto-correlated draws) versus a first-order

one; if so, the chain is thinned, usually by a factor of 2, and the test is repeated. The testing process

stops when the transitions in the thinned chain resemble a first-order Markov process more than

competing models. At that point, the test checks if the thinned chain has sufficient samples to

compute the median with the desired accuracy which is specified during the test; we use a band of

± 0.025 around the median (q = 0.5) as the test of estimation accuracy. If the chain fails the test,

the RL method calculates the required number of samples, and consequently the desired length of

the MCMC chain. A more complete description is in Ref. [56] and references therein.

The RL test applied to the thinned-by-a-factor-of-5 chains identifies that the most auto-

correlated chain (that of Cǫ1) has an autocorrelation of 3.68. It also identifies that 5652 out of

the 8000 samples or a chain of 5652 × 5 = 28, 260 MCMC steps would be sufficient to estimate
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Fig. 13 Top row: Plots of the thinned MCMC chains for Cµ, Cǫ2 and Cǫ1. The chains show

significant auto-correlation (PACF). Bottom row: Partial auto-correlation functions for the

three chains. We see that auto-correlation persists till about a lag of 3. The dashed line

indicates a statistically significant PACF level

the median with the requisite accuracy. This number (i.e., 28,000) is reported in Sec. IV as the

number of MCMC steps required for convergence. The convergence efficiency could be improved

by re-parameterizing the problem; however, each run with surrogate models takes about 2-3 hours
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and reducing the run-time was not a priority.
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